Molecular precursor-mediated tuning of gold mesostructures: Synthesis and SERRS studies
نویسندگان
چکیده
This article describes the high yield synthesis of a range of anisotropic gold mesostructures such as flowers, cubes, plates, and quasispherical mesostructures using a seed-mediated approach. These structures were formed from precursor seed nanoparticles of gold stabilized by the template, 1,2phenylenediamine (1,2-PDA). We demonstrated that control of the morphologies from mesoflowers to quasispherical structures is possible with the molecular precursors used in the synthesis of seeds. It was found that concentration of the template, 1,2-PDA added during seed preparation played an important role in the conversion of mesoflowers to quasispherical and cube-like structures. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV–vis spectroscopy and energy dispersive analysis of X-rays (EDAX) were used for the determination of physical and chemical composition of the nano/mesostructures formed. The seed nanoparticles responsible for the formation of these various anisotropic structures were further characterized and analyzed using laser desorption ionization mass spectrometry (LDI MS) and TEM. We demonstrated high surface-enhanced resonance Raman scattering (SERRS) activity of the mesoflowers using crystal violet (CV) as the analyte molecule. The shapedependent SERRS activity of various meso/nanostructures was also studied. A 0.8 10 decrease in the SERRS intensity was observed in quasispherical structures compared to mesoflowers. The increased SERRS activity is attributed to the unique shape and nanofeatures present on the mesoflowers, which were absent in the quasispherical mesostructures. We believe that the high SERRS activity exhibited by the mesoflowers may be utilized for developing novel sensors. & 2009 Elsevier B.V. All rights reserved.
منابع مشابه
Manganese mine actinobacterial mediated gold nanoparticles synthesis and their antibacterial activity
Background and Objectives: Actinobacteria efficiently can produce different nanoparticles with different biological properties due to their ability to produce secondary metabolites. The aim of present study, isolation and screening of gold nanoparticles via producing actinobacteria from the soil were studied and their antibacterial activities was evaluate. Methods: In this study, after iso...
متن کاملSulfonic-based precursors (SAPs) for silica mesostructures: Advances in synthesis and applications
Sulfonic acid-based precursors (SAP) play an important role in tailoring mesoporous silica’s and convert them to a solid acid catalyst with a Bronsted-type nature. These kinds of solid acids contribute to sustainable and green chemistry by their heterogeneous, recyclable, and high efficiency features. Therefore, knowing the properties and reactivity of SAPs can guide us to manufacture a sulfona...
متن کاملSyntheses of Silica/Polystyrene-block-Poly(ethylene oxide) Films with Regular and Reverse Mesostructures of Large Characteristic Length Scales by Solvent Evaporation-Induced Self-Assembly
Silica/diblock films with various mesostructures of large characteristic length scales were synthesized through evaporation-induced self-assembly (EISA). The structure-directing agents used were amphiphilic polystyrene-block-poly(ethylene oxide) (PS-b-PEO) diblock copolymers of high molecular weights. The synthesis process began with a dilute homogeneous solution of a silica precursor and the d...
متن کاملDevelopment of Hybrid Silver-Coated Gold Nanostars for Nonaggregated Surface-Enhanced Raman Scattering
In the ongoing search for ever-brighter surface-enhanced Raman scattering (SERS) nanoprobes, gold nanostars (AuNSs) have emerged as one of the best geometries for producing SERS in a nonaggregated state. Despite their high enhancement factor, optical extinction from plasmon-matched nanoparticles can greatly attenuate the overall SERS intensity. Herein, we report the development of a new hybrid ...
متن کاملSynthesis, Molecular Docking and Cytotoxic Activity Evaluation of Organometallic Thiolated Gold(I) Complexes
The complex [(PhCH2NC)AuCl], 1, was prepared by the reaction of [(Me2S)AuCl], A, with an equimolar amount of benzyl isocyanide (PhCH2NC) ligand. Through a salt metathesis reaction, the chloride ligand in 1 was replaced by potassium benzothiazole-2-thiolate (Kbt) and potassium benzoimidazole-2-thiolate (Kbi) to a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009